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I. INTRODUCTION

1.1 History

With the invention of the traveling-wave tube (TWT) by Rudolf
Kompfner [1] in 1942, the helix structure was established as the delay
mechanism used to slow down the forward propagation of the electromag-
netic waves. It was this same helical geometry with its dilfer:ntial
screw symmetry which ultimately proved to yield the least dispersion and
widest bandwidth. However, a problem was encountered for high voltage
operation: backward-wave oscillation (BWO). At high voltages, the
axial focusing of the electron beam became difficult, which resulted in
the beam interacting with field components other than the fundamental.
At a certain voltage, interaction with the space harmonics became strong
enough to induce backward-wave oscillaticn. To compound the problem,
the impedance for the electron interaction with the fundamental com-
ponent of the fields was reduced because of the increased energy content
of the noninteracting space harmonies. Though advanced focusing methods
helped to resolve these problems, a better solution was a device which
had a larger interaction impedance of the fundamental component relative
to the space harmonics, while maintaining the wide band characteristics
of the helix, The contrawound helix proved to be such a device.

The contrawound helix shown in Fig. 1.%a was first investigated by
Chodorow and Chu [2] in 1954, They observed that such a structure,
consisting of two tape helices wound in opposite directions, could be
qualitatively analyzed by considering the simple superposition of the

two single-helix fields. In one situation, the fields were thought of
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as being superimposed 180° out of phase. This yielded a field configu-
ration, labeled the antisymmetric mode, with a decreased axial field and
an increased radial field relative to the usual single helix fields. A
second mode, the symmetric mode, resulted when the two single-helix
modes were considered superimposed in phase. For such a mode, the axial
electric fields of the fundamental component added rather than sub-
tracted, giving a stronger axial field, while at the same time recucing
the radial field. Furthermore, the stored energy associated with the
fundamental component of the magnetic field ~- energy which is useless
for electron beam interaction -- was found to approach z=2ro. The impli-
cation was that the fundamental component of the symmetric mode primarly
carried electric energy and that the space harmonics carried principally
magnetic energy. This was in contrast to the single helix in which the
electric and magnetic energy were roughly equal in the fundamental
component of the operating mode. However, such qualitative analysis
ignored completely the interaction between the two helices.

The quantitative analysis of the contrawound helix performed by
Chodorow and Chu was simply that of solving Maxwell's equations under
the appropriate boundary conditions, i.e., a boundary value prublem,
The difficulty arose in defining adequately these boundary conditions
and describing correctly the field configuration for the particular mode
under investigation, To accomplish this, the electric and magnetic
fields were expressed in terms of the surface current density on the
helices. Together with a technique involving variational calculus,
these expressions were used to obtain a determinantal equation in which

the propagation constant in free space was written as a function of the

-3-




axial propagation constant of the fundamental space harmonic. The
variational method was chosen because it had the great advantage that it
permittéd the use of successive approximations, which in the final form
converge tc the exact solution. The result was a determinantal equation
which was both compact and numerically economical.

Building on the work of Chodorow and Chu, Ayers and Kirstein [3]
examined the ring-bar circuit, an easy-to-make version of the contra-
wound helix. The ring-bar structure 1llustrated in Fig. 1.1b consisted
of a series of rings connected one to another by bars at alternate ends
of a diameter. To manufacture, it was simply a matter of making a
number of saw cuts in a tube. Numerical analysis was done based on an
unpublished determinantal equation for the ring-bar structure derived by
Chodorow and Chu. This determinantal equation was completely unlike
that for the contrawound helix. Rather than describing the fields in
terms of the surface currents, assumptions were made about the form of
the fields themselves. These were then manipulated by a variational
technique into a determinantal equation. Furthermore, Floquet's theorem
was applied to the step screw symmetry of the problem so that mathemati-
cal orthogonality was defined over only half of the normal period,
rather than the usual full period.* Useful results were obtained using
this model, which matched experimental data quite well over the first

portion of the dispersion diagram.

' Refer to Appendix B for more details.




Ayers and Kirstein's work was not strictly numerical, houevcr,
Mostly, they dealt with the experimental aspect of the problem as did
others at that time,

Concurrently, similar experimental work was being performed on the
contrawound helix as well as its related circuits. Birdsall and
Everhard [4] analyzed various forms of these circuits ard how they were
affected by such things as dielectric loading, hellix-to-waveguide tran-
sitions, and periodic support stubs. Nevins [5] considered the effects
of altering various geometric parameters along with examining the elec-
tron beam interaction. However, after the initial flurry of work in

this area, interest in contrawound helix structures declined.




1.2 Purpose of the Report

In spite of their many excellent properties, contrawound helix
type circuits have been neglected in the years since their {nitial
development. This is mainly because they have been difficult to manu-
facture to the high tolerances necessary, but also because single-helix
technology is well established. However, with today's manufacturing
capability, renewed investigation into these structures is warranted.

It is the purpose of this report to reanalyze the work first
carried out by Chodorow and Chu [2] on an unloaded contrawound helix.
This mathematical model is then extended to include both the effects of
a surrounding conducting sheath as well as dielectric 1loading. The
results obtained are then compared to previously published experimental

results.




1.3 Organization

This report deals primarily with Chodorow and Chu's [2] contra-
wound helix circuit in free space and the more general problem in which
shielding and dielectric loading are considered,

Chapter Two investigates the free space problem. It begins with a
discussion of the mathematical formulation used to derive the dispersion
equation., It then proceeds to comment on the numerical results and how
they compare to experimental results for similar cases.

Chapter Three is concerned with the general problem of a contra-
wound helix surrounded by a conducting sheath and dielectrically
loaded. 1t is shown how these new boundary conditions effectively alter
the dispersion equation and how this alteration affects the numerical
solution, Furthermore, these results are compared with the appropriate
experimental results so as to determine the effectiveness of the changes
to the determinantal egquation.

Finally, several topics related to the solution of the contrawound
helix boundary value problem are covered in the appendices: the general
form of Floquet's theorem for step-screw periodicity, the general
Fourier expansion of the electromagnetic field functions in circular
cylindrical coordinates, and a discussion of the associated Lagrangian
which is used in conjunction with a variaticnal method to obtain a solu-

tion.




1.4 Mathematical Preliminaries

The mathematical problem is simply to solve Maxwell's equations
under the appropriate boundary conditions, i.e., a boundary value prob-
lem. The problem is constrained to be source free, so that for the

electric field (E),

everywhere 1in space. Further conditions are that the structure Iis
lossless and that the solutions are restricted to the time harmeonic
form e-Jmt. These restrictions allow Maxwell's equations to be manipu-

lated into wave equations for the electric field,

VE+KE=20 (1.2?

where

in which y and € are the permeability and permittivity, respectively, of
the medium under consideration, and w is the radian frequency. Thoucgh

Egs. 1.2 and 1.3 are vector equations, they reduce to the scalar




Helmholtz equation as one considers separately transverse electric (TE)
and transverse magnetic (TM) polarizations of the fields. However,
unlike the traditional waveguide in which the boundary conditions can be
fulfilled by either a transverse electric or a transverse magnetic
field, the geometry of any slow-wave structure i{s such that a superposi-
tion of these two fields is necessary to satisfy the boundary condi-

tions.

1.4.1 Symmetry and Periodicity

The contrawound helix has several symmetry characteristics
uniquely associated with this class of structures. There are two planes
of reflective symmetry, the (r, 8) plane and the (r, z) plane, each
intersecting at the crossover point of the two helices. Considered
together with Maxwell's equations, these reflection symmetries reguire
that any solution must be either even or odd in 2z and ¢, exclulins
degeneracy. Such solutions are standing waves which can be combined %o
give running waves, Each plane of reflective symmetry yields two types
of solutions, depending on whether a conducting or magnetic wall |is
considered, The result (s a total of four types of field configurations
fTadble 1.1). Of interest is the scenario in which the (r, z) plane of
reflective symmetry is replaced by a magnetic wall, The result is that
the vector component of the electric field in the z direction, gz, is
even in ¢, while that for the magnetic field, ﬁz' {s odd in ¢. Because
ﬂz is odd in ¢, it must vanish on the axis. 1In particular, the funda-
mental Fourier component of Hz is identically zero and the energy asso-

ciated with the fundamental space harmonic fcr the system {s stored




Table 1.7,

“ne symmetric and

R —ae
antisymmety

o)
o

Symmetry of the fleld components for the

es.

~
™

EVEN IN ¢ ODD IN ¢
TYPE
EVEN IN Z ODD IN Z EVEN IN ¢ ODD IN ¢
1 E; H, E, H, E, H,
SYMMETRIC :>
MOOE 2 E, E, H, H, E, H,
3 H, H, E, E, Hy E,
ANTISYMMETRIC :>
MODE 4 H, E, H, E, E, W,
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principally in the electric field. The combination of solution types'1
and 2 produces a wave traveling in the z direction with these desirable
properties and is called the symmetric mode.

The antisymmetric mode is a combination of the basic field types 3
and 4, This yields another traveling wave, but one in which the elec-
tric field is shorted out along the z axis. Because the (r, z) plane of
symmetry i1s now a conducting wall, the energy assocliated with the fun-
damental component s stored primarily in the magnetic field, a char-
acteristic detrimental for TWT operation.

Like all periodic¢ structures, the contrawound helix is invariant

under the transformation,

(ry, ¢, 2) =+ (r, ¢, 2 t D) (1.5)

where p is the period. This relationship requires a certain functional
dependence in the description of the fields for the structure. Known as
Floquet's theorem, this requirement states that under a translation of
an integral number of periods, the fields can differ at most by a con-
stant. The result is that the axial propagation characteristics are
limited to a particular form,

Floquet's theorem {s also applicable to step-turn periodicity,
also known as screw symmetry.* For the case of the single helix (Fig.

1.2), the step-turn periodicity is described by the differential screw

i See Appendix B,




*xjl8y 918uys ayl ‘2°'1 314
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-12-




transformation,
2n
(r, ¢, 2) = (r, ¢ ¢ S- 8z, z + 62) (1.6)

where the choice of sign depends on whether the helix is right- or left-
handed. The form of the fields remains invariant, again to within a
constant, for a differential step in the z direction coupled with the
appropriate amount of differential twist. The situation with the con-
trawound helix is that this "differential™ step is uniquely half of the

axial pericd, 8z = p/2, such that transformation of Eq. 1.6 becomes

(r, ¢, z) =~ (r, ¢+ m, z + g) 1.7
As with the traditional application of Floquet's theorem, the step-turn
symmetry imposes further restrictions on the propagation characteris-
tics. As one might expect, these particular restrictions are an aspect

of coupling between the z and ¢ coordinates.T

*.4,2 Boundary Conditions and Space Harmonics

It is no simple matter to satisfy the boundary conditions for thre
contrawound helix. A comparison with the circular cylindrical waveguide
shows the inherent difficulties of matching the boundary conditions for

ral

a slow wave structure, The functional form of the field intensities for

1 See Appendix B.
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a perfectly conducting waveguide consists of regular cylindrical
Bessel's functions, each having an infinite number of zeros,. This
property enables each mode to individually satisfy the boundary condi-~
tions and to therefore exist independently of all the other modes., It
is the closed nature of the waveguide boundary which allows this type of
separation among the modes.

In the mathematical description of the field configuraticns for
the slow wave structure, the regular Bessel's functions are replaced by
modified Bessel's functions which have no zeros. Thus, it is not
possible to satisfy the boundary conditions uniquely for each mode, but
rather the solution is found in an aggregate of these modes. The dis-
tinction is then made that these "modes" are not really modes in the
sense that they can exist independently of each other, but are instead
waves, termed space harmonics, which must exist in unison to satisfy the
boundary conditions, These space harmonics are related by the period-
{city of the structure, and eacn is orthogonal to the rest, inr, ¢, and
Z. For the contrawound helix, the ¢ dependence of each harmonic either
has the form cos (n¢) or sin (n¢). The component with n = 0 is labeled
the fundamental space harmonic.

1.4,3 Dispersion Equations and Solution
by Variational Calculus

With Maxwell's equations satisfied and the boundary conditions
correctly accounted for, a determinantal equation can be found for the
slow wave structure, The dispersive characteristics == how frequency

varies as a function of the phase constant (phase velocity over




frequency) =-- are described by éhis equation, It {s obtained formally
by the usual technique of analysis in terms of orthogonal functions
which yield four infinite sets of homogeneous simultaneous equations.
The overall system is then solved by well known matrix methods.

This formal method of solution, however, 1s especially inconveni-
ent in the case of the contrawound helix. For unlike the helix, the
simultaneous equations describing the contrawound helix are doubly
infinite over two indices. Thus, a variational technique is used for
deriving approximate solutions to yield numerical results. Though this
technique also leads to the same infinite set of eguations Jjust
described, its advantage is that it allows one to systematically approx-

imate the solution to the eigenvalue problem,
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II. THE CONTRAWOUND HELIX IN FREE SPACE

2.1 The Boundary Value Problem

The analysis of the contrawound helix in free space is initiated
by separating the problem into two regions, one inside and one outside
the cylindrical surface r = a, Region 1 and Region 2, resrectively, as
shown in Fig. 2.1. The helices are assumed to be infinitely long, of
equal radii (r = a), and wound with an infinitely thin perfectly con-
ducting tape. The dimensional quantities that describe the structure
are the plitch, the tape width, and the radius. These quantities are

related as follows:

2na

— = cot © (2.1)
p
2né
£ . (2.2
p & )

where

a = helix radius

period of helix

o
]

O
]

tape width

s
L}

pitch angle
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2.1.1 The Field Functions

To satisfy Maxwell's equations in the form of the Helmholtz equa-
tion as well as the complicated boundary conditions, it i{s necessary to
construct a solution using the usual technique of Fourier decomposi-
tion. Thus, each field component {s written as an infinite sum of
elementary waves in which each wave satisfies the differential equation
and some of the symmetry conditions., By superimposing the total set of
waves, all other restricting conditions can be satisfied.

Any arbditarary field in a homogeneous source-free region can be
expressed as the sum of a TM field and a TE field. The skew boundary
conditions of the contrawound helix make it necessary to have both TE
and TM fields present in any given mode. Thus, the Fourier decomposi-

tions describing EZ and HZ in the two regions are

Y r) 0<r«<a (2.3)
n
] ® —anz

\ D) . >e eJte <

== nN=-o

-1Hz © ®
< = 11
ix-® Na~->




From Maxwell's equations, the other field components are written in each

region in terms of E, and Hz.T These are in Region 1,

(0 < r < a)
® o ~-28 r -JjB z
i n _ Juwr n® 30
o= L 1 |y L lyr) -5 nlve) fe e
lu~® Nz=ax LY r) n
L' n J
(2.7)
® ® L8 r -jg_z
Ho= 3 T [ a 1(yr)-—B—c, 1,(vr)le T oJ%
1 ¢ Y £,n n 2 4,n "¢ 'n
L=-® n=-w | 'n (v.r)
i n
(2.8
and in Region 2
(a < r)
© © -18 r -JB z
- n - Jwur ' n- e
Fem L 1 5 Byn K r) -y 0y K lyr)le e
f=-® Na-o> (an) n
(2.9)
® ® . 18 r -jg z
- JWE - n n”_jLle
He= 1 1 |y o Kilyr) 5 Dy Kpl¥pr)] e e
Le=-= n=-o [ n (an)
(2.10)
In Egs. 2.3 through 2.10, Il(an) and Kz(an) are modified cylindrical

Bessel functions,

?

Refer to Appendix A.
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These are necessary for slow waves (phase velocity




less than ¢, the speed of light) and are chosen to give nonradiating
solutions, Any derivative of these functions is with respect to r. The
relationship between Bn and Yn is provided by Maxwell's equations (again

for slow waves) and is
2 2
Yn-‘Bn k (2.11)

where k is the wave number as defined in Eq. 1.4, From periodicity and

Floquet's theorem, Bn has the property,
B =8 <+ — (2.12)

such that Bop is the phase shift per period alcng the structure.’
However, the screw-symmetry or step-turn periodicity provides an addi-
tional relationship between the two summation indices ¢ and n, whereby

the axial propagation constant can be redefined to be?

2 1
B =8 =eoo+(9.+2n)p (2.12")

In light of Eq. 2.12, Eq. 2.11 is then reformed as

T Refer to Appendix B for details,
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Y =Y =8 -k (2.13)

2.1.2 Boundary Conditions

The boundary conditions to be satisfied are that

~

n x E is continuous everywhere on the
the cylindrical surface r = a (2.14a}

except on the helices where it is zero,

n x E = 0 on helices (2.14b)

and that

n xH is continuous onr = a,
except on the helices (2.15)

where it is proportional to the surface current density. In the abdove

conditions, n is the unit vector normal to the surface r = a.

2.1.3 The Field Components in Terms of
the Surface Current Densities

Separating condition 2.14a into its orthogonal components yielids

the equations:

and




From Eq. 2.16, the Eqs. 2.3 and 2.4 are equated. After applying the
principle of orthogonality over one period on the cylindrical surface r
= a, the relationship between the two sets of Fourier coefficients is

obtained:

A =B - (2.18)

where I, = Ig(Yna), ete. Proceeding similarly from Eq. 2.17, Egs. 2.7

and 2.9 are employed to yield the relationship

Examined next {s the boundary condition for the H fields, Eg.
2.15. Like the fields, the surface current density on the helices can
be expanded in a convenient form for algebraic manipulation. Its ¢ and

z directed components are decomposed as

- - -j8, .2z
%7 - ¥ ¢J1 e Lo QIO (2.20)
N
,n
-je 2z
. 1 % Lo e (2.21)
N
£,n
_ - -JB, 2
237 . 7 %yt e an R (2.22)
L,n L.n

and
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3 e AL (2.23)

in which the "+" and "-" superscripts designate the 1left-handed and
right-handed helices, respectively, and in which L and n are allowed to
range from minus infinity to plus infinity. In terms of the H field

components, the condition of Eq. 2.15 yields the boundary equaticns:

H -1 =% +%", r-a (2.2U)

ang

by writing Eq. 2.24 in terms of the appropriate Fourier expansions (Egs.
2.5, 2.6, 2.20, and 2.21), orthogonality is used to express the two ses

of field expansion coefficients (C and Dl n) in terms of the current

£,n

density coefficients. This gives, after making use of the relationship

in Eq. 2.19,
(0. ¢+ )
c, = i i Jen (2.26)
1 - ] *
t,n KQIQ KlIg~
and
AN z. .+
I ( 3o+ % )
D, = gttt (2.27)
N ) ')

Finally, consideratlions of Eq. 2.25 in which the appropriate expansions
(Egs. 2.8, 2.10, 2.22, and 2.23) are substituted ylelds, after some

algebra, the result that
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A =Q, K (2.28)

and

B =Q, I (2.29)

where

1
ToKe = Isz_J

(2.30)

0
=
-
3
n
. <
€ |
™ |
o]
x
l/‘\
N
o |
o]
(3]
[
o 4+
-

b |
~—
)

- fat]
® ) w
o
3
o
[
P
jo |
o
c,
o o+
3
N
|
~
r—

Again note that the modified Bessel functions have the argument ‘r2 La.

The denominator in Eq. 2.30 i{s the wronskian of (Il’ Kl) and can be

renlaced by -1/(Y1’na):

Having written the Fourier coefficients for the fields in terms of the
current density coefficients, Eqs. 2.26 through 2.29, the field intensi-
ties are at last expressed in terms of the surface current density. And
since all field quantities are defined to within a constant, the summa-
tions can be multiplied by the quantity -/E//; s0 as to express the

field components in the following form:

Ez(r = a, ¢, z) =

L8 a
1 2 z.~ r AN ,n
Jka EZn (Yi,na) ( Ji,n * Jl,n> - ]2

] =58
* <J . "J; n) Ik, e L, JJe (2.32)
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z - z. .+
E°(r' =a, ¢, z) = Y 281’na K,'Il (Jl,n + J!"n)

g,n
L8 a 2 / ~-J8 z
- &,n 2 vvye l [0, 6.+ £,n° 3¢
<”1 a) KgIp + (ka)® K1) \Jz,n * Jz.n) e €
N
(2.32}
- ¢~ 6.+
H (r S a, ¢, 2) 2zn (Yl,na) (J!..n + Jl.n)
-j8 z
L,n jie
* K n
Kl(yl,na] Iz(Yl’nr‘) e e (2.3%4a)
> . - ¢ .- ¢,
Hz(r 2 a, ¢, 2) zzn (Yl’na) (Jz,n + J!.,n
-j8 z
, Q.,Y'l j9‘¢ )
* I (Yl’na) KE(Yl'nr‘) e e (2.342
L8 a
2,n" (¢, ¢ .+
H(rsa, ¢, 2) = ) ——-—(J + %y )
¢ .n Yz’na £,n g,n
a
* r K!'!, (Yl,na) Il (Yl,nr) - Y!!.,na
Z,- z.,t zalvqa o, o,
LA O SRR - J, o+ 0
£,n L,n Yy~ na L,n 2,n
~-Jj8 z
' L,n _Jke
* K, (Yl,na) Iz(Yl,nr) e e (2.353)
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* 1, (Yz na) K; (Yl r)} e e (2.35b)

In Egs. 2.32 and 2.33, the modified Bessel functions have for their

arguments Y a, and throughout Egs. 2.32 through 2.35, the indices &

L,n

and n range from minus infinity to infinity.

2.1.4 The Surface Current Densities on the Helices

¢+ AR 5
Jl.n and Ji,n' it

is important to analyze in some detail the characteristics of the sur-

With the field components written in terms of

face current densities,

From the boundary condition of Eq. 2.15, H¢ and HZ are ccntinucus
at r = a, except on the helices. To meet this condition, the surface
current densities must be constrained as

J =0 off helix (-) {(2.302a)

J =0 off helix (+) (2.362°




—7

In other words, there can be no current off the helix tapes. A con-
straint such as this is somewhat of a novelty in boundary value prob-
lems. In this case (as well as other open structures), the boundary at
r = a must be explicitly defined to satisfy the geometrical considera-
tions. Similarly, the current amplitudes are chosen to satisfy the
symmetry properties and the particular mode of operation,

To obtain the symmetric mode as defined in Section 1.4.1, it is

necessary for Er’ Ez’ and H_to be even in ¢, while gr, Ez' and §¢ are

¢
odd in ¢. From Egs. 2.24 and 2.25, it follows that the current densi-

ties must satisfy the same symmetry conditions as the fields. Thus,

zg+(a, ¢ z) = zg-(a, ¢, 2) (2.37a)
and

%@, ¢, 2) = - % (a, -4, 2) (2.37b)

To facilitate the narrow tape approximation in which it is assumed

current flow is primarily in a direction parallel to the helices, it is

¢ .+

advantageous to express zg: and "J” in terms of components parallel and

perpendicular to the appropriate helix tape. Referring to Fig. 2.2 and

(Lg-,'Lg*) i{s oriented

noting that each pair of currents (Ig'. |£’] and
symmetrically with respect to the z axis, the following expressions may

be formed:
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Zg'(a. ¢, 2) sin @ cos 6 (2.38a)
- lg-(a. ¢, 2) + Lg_(a, ¢, 2)

¢z_I-(a. ¢, 2) cos 6 sin @ (2.38b)

zg*(a, ¢, z) sin o cos 6 (2.39a)
= % Ig*(a, ¢, 2) + J"_I+(a. ¢, 2)

4’v._1+(:-.\, ¢, z) cos 8 sin ® (2.39b)

Condition 2.37 then becomes
|f(a, ¢, z) = Ig-(a. -¢, 2) (2.402)
lQ*(a. ¢, z) = j'«_I'(a. ~¢, 2) (2.40b)

With the Fourier coefficients for Igi and igi defined in the usual

way,

-J8 z
Istca, ¢, 2) « ¥ 'J;': e L,nw Lo (2.41a)
L,n i
-J8 z
J"_It(a, b, z) = 'LJ: o e L, e (2.41b)
2,n i

the field expansions can be written in terms of these coefficients.
However, by making the assumption of narrow helix tapes, the resulting
expressions for the fields are greatly simplified. Mathematically, this

assumption translates to
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LJ cot 8 << IJ and 'LJ tan 8 << IJ

from which the set of Fourlier coefficients

|+
Jl,n

is seen to dominate, Thus, Eqs. 2.38 and 2.39 can be reformed as

ZQ-(a. ¢, z) sin (2.42a)
- 'g-(a,¢,z)

¢Q-(a, ¢, z) cos © (2.42b)

and

zg+(a, ¢ ,2z) sin (2.42¢)

-3 lg‘(a,¢.z)

¢g+(a. ¢, 2) cos 6 (2.428)

Finally, since
Bl,n - B—l,n+2 (2.43a)
B-l,n = Bl,n-l (2.430)
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the symmetrical relationships between the Fourler coefficients for Ig*
and Ig- can be established.' Making use of Egs. 2.40a and 2.41a, these

become

A P (2.88a)
(2.44p)

2.1.5 The Determinantal Equation from the Exact
Solution to the Boundary Value Problem

As mentioned in the previous section, because of the nonhomogene-
ous character of the boundary at r = a, the geometry of the structure
must be reflected in the nature of the surface current densities.
Specifically, each surface current density, g+ and g-, cannot exist off
its respective helix (Eq. 2.36). And from the relation between H and J,
it follows that this is also a restriction on the H fields at r = a,

There is a similar condition for the E fields; namely, that
Ez(r =a) =0 on helices (2.453)
E¢(r = a) =0 on helices (2.45b)

which is, in fact, the boundary condition 2.1llub.
To satisfy Eq. 2.36, the constraint on the surface current densi-

ties, the usual technique of analysis in terms of orthonormal functions

t see Appendix D for details.
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is used.T Needed are two complete sets of orthonormal functions
(labeled g;’v and g;.v). one for each helix tape, defined on the tapes
only. Making use of orthogonality allows :Ji,n and ¢J:,n to be written
in terms of these functions so that each of these current coefficlents
will be compatible with the constraint of Eq. 2.36.

The result is that the Ez and E¢ expressions are now summed over

four indices rather than just two, and Egqs. 2.45a and 2.45b take the

form

2 L S
gz(r ") - 1zn (Yl.na) KlIl ui Ju.v GE.H:U-V

Z._+ +
* 2 Ju,\a Gl,n,u,v (EBE’na] K!,Il
UV
¢~ - ¢+ +
* J G + J G
uz,\) u,v 2,n3u,v uz'\) U,V L,n3u,v
-j8 z
% o L,n eJM = 0 on helices (2.46a)

' Refer to Reference 2 for detailed discussion, pp. 38-l6,
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ZQ -
E (r=a)= 3 (28, a)kI, {1 % Gy ..
¢ g.n 2-1“ ~ o~ u.\) u!\ “'n’u’v
2
LB, _a
RN B Sl IR
TR ' N U,V £,n
e (ka)? k¥l Y %0 o
e u,v L,n;u,v
U,V
-JB L4
+ 7 % g Lonm 3 _ 5 on helices
u,v 2,n;u,v
B,V
(2.46b)
In Egs. 2.46a and 2.46b, the functions G. and G, are the
L,nju,v L,n3u,v

result of applying orthogonality to the two sets of orthonormal func-

+ -
tions and R
gUsV 8\11\’

Finally, one can operate Ez and E:¢ with the orthonormal functions

+ -
and
Su v 8u

to obtain
v

b a
u'ivv Ez(r = a) 8u',v' =0 (2.u7b)
and
< a
uvzvv E¢(r - 2) Eurove T 0 (2.u8b)

Equations 2.U47 and 2.48 are zero over the entire cylindrical surface r =
a, a result of g; , and g: , being defined only on the helix tapes,
14 H

while Ez and E¢ are zero on these game tapes. Applying orthogonallity to
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Eqs. 2.47 and 2.48 over the cylindrical surface r = a eliminates the
double summation over the indices u' and v'; and if the expressions in
Eqs. 2.46a and 2.46b are substituted for E,(r = a) and Eo(r = a), the
resuvlt is four doubly infinite sets of linear homogeneous simultaneous
equations having the same number of unknowns. By such manipulations and

subsequent interchanging the orcer of the two summation signs Z and

L,n
] , one finally obtains from Eq. 2.47,
H,yV
v 2T 7 G, y, a)? K1, G
TR TR P L,n5u,v \ £,n L7 “fynzut, v’
+ r 2
z + T
¥ uzv Ju,v‘ 22n Gl,n:u,v (Yl,né) Klll Gl,n:u'.v'
1] L
r
- ¢, N ¥
uiv Ju,v ‘ lzn Gl,n;u,v (lel,na) KQ.IQ. G!.,n;u',v'
? k 1 ]
7
- ¢ + J + k4 -
uzv U,V lzn G!.,n;u,v (lel,na) KZIQ. Gl,n:u',v' 0
] L ?
a
(2.u9b)

and from Eq. 2.48,
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7 & I G, (28, a) K,I, G ,}

WaVlgin L£,n3u,v L,n L7 L,nu',v

+ -

+
L,n5u,v (’Bz.na) KiTe Cooniur, v

Z. .+
+ 109 1 G
U'V l,n

2
LB a
L,n 2ty 7
<Y2 na ) K!.IZ, * (ka) KQIQ G!..n;u',v'

{
2
-1 % |1 q { M) K I, * (ka)‘?K'J"‘ G
’ J

U,V L,n5u,v

T
v e | =0
272 L,niu',v

Wavieth £,n5u,v 2

[2.502)

A solution exists only if the determinant of the coefficients of these
equations vanishes. Thus, formally at least, a determinantal :uation
can be obatained in which Bo,oa i{s calculated as a function of ka. The
problem is simplified by noting that the symmetry of the structure
allows g* to be determined from g- or vice versa. The four sets of

equations then degenerate into two sets of 1independent equations:

either Eqs. 2.49a and 2.50a or Eqs. 2.49b and 2.50b.

However, the difficulty involved in the calculation of numerical

results is clear, and a more convenient form for deriving approximate

solutions is desired.
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2.1.6. Using the Variational Method to Derive an
Approximation to the Determinantal Equation

As mentioned in Section 1.4.3, a variational technique 1s useful
for deriving approximate solutions to yield numerical results. Begin-
ning with one of the standard forms of the Lagrangian for an electromag-
netic field, a variational expression is found for the present problem
in terms of field intensities, which satisfy Maxwell's equations as well
as the symmetry and periodicity conditions, but not the boundary condi-

tions on the cylindrical surface r = a.*

The result is an expression
for the complex power, I, which might be generated or absorbed by the
cylindrical surface r = a:

p 2n - «
1= f dz fo adon e [}g (r = a) x lg(r =a) - 5

g*(r = 2a) x H(r =« a)]
o

(2.51)

Because the terms within the bracket are dotted with n, the unit vector
perpendicular to the surface r = a, one needs only to consider the
tangential components of E and H. 1In light of Eqs. 2.16 and 2.17, Eq.

2.51 is rewritten as

P 2n - *
I - fo dz Io ad¢n-+E(re=a)x lg(r =a) - 2!-_{(r' = a) (2.52)

' See Appendix C,
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p 2n % - % -
I= f 9z f a do E¢(r =a)y + E(r=ajz
o o

x [IH‘b(r = a) - 2H¢(r - a)] ; + [lﬂz(r = a) - ZHz(r - a):’ ; (2.53)

Writing the tangential components of the H field in terms of the surface

current density (Egs. 2.24 and 2.25) allows Eq. 2.53 to be expressed as

p 2n r. . -
1= f dz f a do E¢(r = a)'l‘% + ¢J+:| + *Ez(r' = a)[zJ + ZJ‘] (2.54)
(o] [e]

By emploving the usual Fourier expansion for E¢, Ez' ¢J:, and ZJ: and
performing the integration (equivalent to an orthogonality integration
whereby all the cross terms of the multiplied summations are elimi-

nated), the following form for the variational expression results:

- S L L P <A |mT e
I lzn E¢(r a]l,n[;Jl,n * Jl,n] * E:z(r‘ a)z,n[ Jl,n * Jl,nJ

The solution to the problem is then given by

- +
[51 . ‘-’z,n]' 0 (2.56)

but 1like Q- and g‘. the small variations cg' and 5g+ must themselves
vanish off their respective helices. Once this is taken care of, the

four doubly infinite set of simultaneous equations which result are
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{dentical to Eqa. 2.49 and 2.50.*

However, the goal here is to find a simplified version of the

determinantal equation. Using the narrow tape approximation, Eq. 2.42,

ifg; ., 9
“t.,n’' =4,n

{s written out in teruo of the E field expansions given in Eqs. 2.32 and

the variational expression

2.33., After simplifying and making use of the relations in Eqs. 2.lula

and 2.44b, this becomes

IO (550 g IO A A ol | GO
* Y-z,n(":itnX'J:z,n) * 9,%:1 é_c Ze0n (IJ;.',;)(IJ:Q,nﬁ) voe.c

2.57)
where
U ={Y _a 2 Ki{y _a}l Ity a sinze (2.58)
o,n o,n o\ o,n o\ o,n
2
L8 a
_ 2 2 %,n 2 e 2
Yo n (71’na) K I, sin®e + -;—ig— K I, * (ka) K;I; | cos“e
- (28, _a) X,I sin’e (2.59)
£,n ) T

? See reference 2 for details, pp. 47-54.
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and

Y L7L L

2
18 a
2 2. _ L,n 2 2
Zz.n ' (Yz,na) KgIg sine . @ > K,I, + (ka)® K!1! | cose (2.60)

As in Section 2.1.5, the surface current densities can be made to
conform to the constraint given in Eq. 2.36 by writing lJ;'n in terms of
a complete set of orthonormal functions which are themselves aefined
only on the helix tapes. However, for an approximate solution, Q- may
be given by a finite number of terms of certain convenient functions,
each having an unknown coeffirient and each defined only on the helix
tapes., Though the degree of accuracy increases as the number of terms
in the sequence increases, it has been found that a one-term approxima-
tion provides good results, while greatly simplifying the variational

expression. For the one-term approximation, there is no variational

problem, and the determinantal equation is simply

I =0 (2.61)
Thus, 'Q- is approximated by
( JBo o” 2rz _ & 2nz
[} £l o —— =
Ae , 082 S pand 5 2 S ¢ S 5 + 3 (on helix)
1™ -4 (2.62)
0 , otherwise (off helix)

The Fourler coefficients IJ; n are then found by setting the Fourier
14
expansion for lg' (Eq. 2.41a) equal to Eq. 2.62 and apolying orthogonal-

ity,
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| - A P 2nz/p+g/2 8
Jln-Eﬂ_I dz d¢ e
! P 7% 2nz/p=E/2

0,0 J8

z -
d Z,n eJzo (2.63)

The integral over ¢ reduces to

2nz/p+ES2 VL 212 [g1n (2 %
dper®ae P : (2.64)
2nz/p~£/2
and the integral over z then takes the form
L2n
P 38, oz =38, 2 31 B2 er<Bo.o Beum *T) !
J dze ' e e - 5= (2.65)
° 8o,o - Bl,n * p
Since
B, =8 _+(1+2n)ZE (2.121)
2,n 0,0 p
Eq. 2.65 reduces to
- R [Tt )L 2
Jiwn (é 1 om sin (2mn) (2.66)
2p ,n =0
= (2.67)
0 ,n=0
Considering Eq. 2.63 in its entirety yields the result that
b o a &, stn) (2.68)
£,n 2n L

where



sin (RLE/2)
a, (LE/2) (2.69)
and
1, n=20
§(n) = (2.70)
0O, ne=«0
From Eq. 2.57, the determinantal equation becomes
2V + E az Y -Y =0 (2.71)
0,0 L L,0 -L,0
L=]
The reason there is no Zz n term in Eq. 2.71 is because of the delta

L,n

expression for the variation, Eq. 2.57, Z is multiplied by lJ— .
L,n 2,n+%

While n can only be zero, the quantity (n + L) is never =zero since

function in the expression for lJ (Eq. 2.68). In the original

£ 2 1., This implies that

I £
Tgmeg = A 3m oy 80+ D) (2.72)

will always be zero, as the delta function will never take the form

6(0).

2.1.7 The Single Helix Determinantal Equation

The corresponding determinantal equation for the single helix is
presented here for completeness. It is also helpful to have it in a
form which 1is easily adaptable to the more general boundary value

problem described in Chapter Three.
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Instead of Eq. 2.71, the determinantal equation for the single

helix is

=0 (2.73)

N

Noting that Y o for the contrawound helix {s identical to Y, for the

2, L
single helix, the terms Ugs YZ’ and Y_g are simply Uo,o' Yl.o' and
Y-l o’ respectively. The Vo term results from the fundamental component
’

of the TE fields, which is of course not present in the symmetric mode

of the contrawound helix.T and has the form

2 ., . 2
= ]
v, (ka) KO[Yoa) Io(Yoa) cos“e (2.74)

t should be of no surprise that the determinantal equation for
the single helix differs only slightly from that of the twin helices.
However, this difference {s enough to significantly alter the dispersion

characteristics, as will be seen in Section 2.2.

' This property is demonstrated analytically in Appendix D.




2.2 Results for the Free Space Problem

The formulation of Sections 2.1.6 and 2.1.7 for the free space
problem is implemented with a HP 1000 minicomputer.1

Fixing the values of & and §, the determinantal equation is solved
numerically to obtain Bo,oa as a function if ka, for the contrawound
heli{x, and Boa as a function of ka for the single helix. Since Bo,oa =
Boa, all dispersion plots are made with respect to Boa. Furthermore,
the ordinate and abcissa are normalized in the conventional manner by

the relations

ka/cot @ = P/de/ cespace

Ba/cot 6 = p/xhelix

where A 1s the wavelength.

Before proceeding, it is important to note that the numerical
results comparehwell t.o experimental only for narrow helix tapes (g < 1)
such that the overlap region between the two "touching" tapes {s kept to
a minimum. Nevins [12] demonstrates that the discrepancy between the
theoretical predictions and experimental results is due to the currents
deviating from their respective helical paths. When current flow from
one tape to the other is prevented -- {.e., the two helix tapes are not
allowed to touch == the predicted and experimental results compare

closely and are not dependent on §.

' Refer to Appendix E.
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Figures 2.3 and 2.4 show how varying the pitch angle affects the
dispersion, for £ = 1 and £ = 2, respectively. The pitch angle is
reduced as cot 8 is increased from 2.5 to 10, resulting in a decrease in
the group velocity, v8 (vg - d(ka)/d(Ba)]. along with a decrease in the
phase velocity, v, (vp = ka/Ba).

Figures 2.5 and 2.6 show the effects of varying £, while cot 8 is
fixed at 10 and 5, respectively. In both cases, changing the tape width
has a negligible affect on the dispersion characteristics for the single
helix, while those for the contrawound structure are altered consider-
aoly., The reason the contrawound circuit is so affected is due to the
interaction between the two helices, which becomes stronger as the tape
width is increased.

Experimental results of Birdsall and Everhart [U4] are plotted
along with numerical results in Fig. 2.7. In both cases, the dispersion
incre;ses with increased tape width. The deviation between the theo-
retical and experimental results is due almost entirely to the fore-
shortened current paths which result when the two helix tapes are
allowed to touch. However, the effects of finite tape thickness must
also be considered.

Experimental results [4] for several tape thicknesses are plotted
in Fig.s 2.8 and 2.9. Correlation with theory improves as the tape
thickness s reduced; furthermore, a comparison between the two figures
reveals that there is better agreement between theory and experiment for

the smaller tape width, £ = w/4,
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III. ANALYTICAL CONSIDERATIONS OF METAL AND DIELECTRIC
LOADTNG ON THE CONTRAWOUND HELIX

3.1 The Boundary Value Problem

To study the effects of dielectric loading on the dispersion
characteristics for the contrawound helix, the dispersion equation
developed in Chapter Two must be altered so as to allow for variaticns
in the dielectric properties. As before, the problem is separated into
two regions, but each with its own dielectric constant. Figure 3.1
shows schematically that the permeability is still that of free space,
Koo while the permittivity is arbitrary, 51 or 52. The field quantities
are written as a Fourier decomposition in each region and are then
matched ac¢ross the boundary r = a to express them in terms of the sur-
face current density on the two helix tapes. Finally, the variational
method is again employed to obtain a determinantal equation.

If Region 2 is bounded by a conducting sheath at r = b, Fig. 3.2,
the problem becomes one in which the contrawound helix feels the effects
of an external shield. This effect is handled mathematically simply by

reforming the modified cylindrical Bessel function(s) in Regicn 2 to

properly account for this boundary.

3.1.1 The Field Functions

Before writing the Fourier expansions for the field quantities, k
and Y must be redefined to correctly account for the dielectric proper-

ties in each region. Thus,
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i=1,2 (3.1)

1/2
2 2
(Y"'“>1 . <Bi.n ki) =1, 2 (3.2)

where { denotes either Region 1 or Region 2. Furthermore, the intrinsic

wave impedance is defined to be
ot lT i =1, 2 (3.3)
To facilitate both clarity and understanding, a shorthand notation is

adopted in which the 2 and n dependence of the terms in the Fourier

decomposition for the field quantities is assumed:

Y, " (Yl,n). (3.4)
1
8 =8y o (3.5)
Flvyr) = FZ[(YE,n)i rJ' Fo = I Koo Ips Ky (3.6)
A= Al,nT
B e, !
5 (3.7)
c=c
b= Dl,n
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Consequently, the Fourier expansions may be written in a form which

assumes summation over the two indices % and n whereby

P 1

L,Na-e

In this notation, the expressions for Ez, H E and H,L in the two

2’ e’ ¢
regions are as f‘ollows:T
(0 <r < a)
E =3 n, AL(v,r) e JBZ Jte (3.8) |
17z 1 1
&n,8 k
B, = 1= 5 ar(vr) - g (vl et IR 3
$ 2 ) Y 1
Y1r' 1
.5 ¢ -8z JR¢ -
H, ) 3 I(Y1r) e e (3.10)
K, L8 -38z 2
o= 113 5 ar(v,r) - ci(v.r)le el ™9 (3.11)
¢ Y 1 2 1
1 n,y.r
11
(a <r)or (a<r<hb)
. ] oJBZ J¢
,E, ) nZBKe(YZr‘, e e (3.12)
tn_8 K
. 2 4 2 et -jBz _ji¢
2Eq ¥ 5 axe[er) I3 Dxewzr) e e (3.13)
Y.r 2
2
t See Appenedix A for more details.
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D -8z _jte
H, - ) " Kh(YZr) e e (3.14)
\
K
- 2 Ayt _ L8 =3Bz 3¢
ZHO T {3 Y, BKh(er] — 2z DKh(YZr) e e (3.15)
22

If Region 2 is unbounded, the modified Bessel functions in the last four

equations are simply,

w
K =K (Y ) r
e L [ L,n > ]
r
' - '
Ke Kl-(Yl,n)Z r]
- -
Y ) r
_( L,n 2 |
- 1
) [Ql,n)z r

-

> (3.16)

If, however, Region 2 is bounded by a perfect conductor at r = b, these

same functions take the form (in shorthand notation),

=~
"

I(Yzb) K(er) - K(Yzb) I(er)

K = I'(Yzb) K'(er) - K'[Yzb) I'(er)

> (3.17)

K = I'[Yzb) K[er) - K'[Yzb] I(er)

LA I(Yzb) K'(er) - K(Yzb] I'(er]
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Applying boundry conditions 2.14 and 2.15 at r = a and prnnreading
as in Section 2.1.2, the Fourier coefficients for the field components
are determined in terms of the surface current density Fourler coeffici-

ents. Letting

Jt . J:'n (3.18)
and
%t = ¢Ji'n (3.19)
the expression for C {s found to be
c=R(ZT +2") +s(% ) (3.20)

where

n
19 2 _ 2
T [(Yza) (1,2 } 5o

2
kK.I'Y a(‘f a) n
17 1%\'2 1 /M 2 _ 2| .
+ 3 N [KYZa) (Y1a> ] Q (3.22)

16n21
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n nZEBI Kh

[ 2N Y IK - k,n, Y K 1I

1"1°2°h

2 2
1 [ n1I Kh (Y1a (Zza)

] - L
(v a)3(j a)3 kon Y 1Ky = kyn YK I

] (3.23)

(3.24)

and

Y1Y2”2Ke

k.n.Y I'K -k n Y I
N = 122 ! 1Kh M[K%Za)z - (Y1a>2] (3.25)

Similarly, the expression for A is

A= [T(ZJ' £ 205 e x(%07 . ¢J+)] (3.26)
where
T = 1 (3.27)
N .
and
2
k,I'y. aly a)
x--;ig—-n1 ‘22 (3.28)
Y /a 81

In the above equations, the argument of I and I' {s Y1a, while K, Ké,
Ky,» and K% take the form of Egs. 3.16 and 3.17 with r = a. Expressions
for the Fourier coefficients B and D are determined from the relation-

ships

n
B = A(—‘ -}I(—) (3.29°
n2 e




and

n
-3 D ST T
D X [n1 c- (% +% )] (3.30)

3.1.2 Approximating the Determinantal Equation

As outlined in Section 2.1.5, the solution to the boundary value
problem resulting in the determinantal equation can be found by solving
four doubly infinite sets of 1linear homogeneous simultaneous equations,
each having the same number of unknowns. However, a more manageable
approach is to use the variational method of Section 2.1.6 to obtain an
approximation to the determinantal equation.

Since the variational expression for the current problem is the
same as that for the contrawound helix in free space, Eq. 2.55 may be
used directly. From Eqs. 3.20 and 3.26, the expressions for E, and E

¢
at r = a are

E(r=a)«] jn11[?(zd- 20 4 x(%07 . °J‘)] o JBZ JLe (3.31)

and
£n 8 _ -
B,(r = a) = 1§ -3 21 I{?(ZJ + 207) e x(tT . ¢J+)]
Y.a
1
K
- 15 xv[n(% e 29%) e s(%7 %*)] e 382 It
1

(3.32)
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These expressions are substituted into Eq. 2.55 resulting in Eq. 2.57,

with Uo,n' Yl,n' and zl,n defined as follows:
U = n,IT sine (3.33)
o,n 1 -
&n,B K
Y =n,IT sinze - L IX + =L I'S cosze
L,n 1 2 Y
Y. a 1
1
in B K
1 1 .
+ n1IX - IT = — I'R| sin 8 cos & (3.34)
2 Y
Y.a 1
1
and
n, 8 k
YA = nIT sinze + 1 IX + - I'S cosze
2,n 1 2 Y
Y.,a 1
1
2n18 k1
-{n,IX =« —— IT = — I'R| sin & cos &8 (3.35)
1 Yza Y1

1

Using the approximation for lg’ given In Eq. 2.62, the determinantal

and Y_ are determined

equation i{s again Eq. 2.71, where Uo 2.0
’

»O' YQ.,O’

from Eqs. 3.33 and 3.34,

Similarly, for the single helix interposed between two dielectric
regions at r = a and with or without a conducting sheath at r = b, the
determinantal equation {s found to be the same as Eq. 2.73. As before,

Uy, Y,, and Y_

or g 2 for the single helix are simply Uo.o' Yl o' and Y_
1

respectively, but with Uo,o' Y

£,0’

, and Y being determined from Egs.
L,0 -%,0
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3.33 and 3.34, The corresponding form of V, for the two dielectric
problem is

1 ]
n1 k1I YZHTKh

vo"I—"*[ YIK'-knYIKhJ

— I' cos @ (3.36)
2 21 112

The formulation developed in this section can now be used to

explore the effects of dielectric and metal loading.
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3.2 Results for Dielectric and Metal Loading

By implementing the formulation of Section 3.1.2, the effects of
loading are investigated simultaneously for both the contrawound and

single helix.

3.2.1 Dielectric Loading

The dispersion plot in Fig. 3.3 for cot 8 = 10 shows how the group
velocity and phase velocity are reduced as e2/51 is increased from 1 to
9. This behavior is also present in the experimental work performed by
Birdsall and Everhart [4]. They observe that as the distance between a
surrounding glass cylinder and the slow-wave structure is reduced, the
degree to which the velocities are loaded increases. Their results are
reproduced in Fig. 3.4. Inspection of this figure further reveals that
the effects of dielectric 1loading are negligible when the distance
between- the c¢ylinder and the circuit 1is increased past a certain
point. The reason for this is the fields outside the circuit (Region 2)
decrease exponentially and consequently do not penetrate radially a
significant distance into Region 2.

Figure 3.5 attempts to correlate the experimental results for
loading by a glass cylinder of finite thickness to theoretical predic-
tions for dielectric loading, in which the dielectric of Region 2
extends to infinity. To do so, an equivalent relative permittivity for
Region 2 1is calculated by volumetrically proportioning the relative
permittivity of the glass cylinder.

It is assumed that the fields in Region 2 penetrate to a depth of

b/a= 1.21. Consequently, the slow-wave circuit "sees" an effective (two

- 63 -




_1lIIIIl.-IIIIsll-II-IIIlIIIIIll-IIII‘-‘IIIII---I-I-IIII-IIIIII-IIII.-II-I.ll-‘--IlIIllIllIIlIlllIlIlIIIll|llI‘-‘|lI||ll|l‘-Il1IJ||||l||

‘L = 3 0L = 8 300 “A1Bujpuodsauuod ‘g ‘Geztl ‘I = bwsCy pue 6 ‘Gty Y = '3,%3

JBY3 Yons -- 2 uOoIBad -- U0J83u4 u99NO ayj AQq Bulpeo] OFJ3OLT3IP JO 3081J9 a8y3 Buj
-MOUES pue SUO[Bad OJJUQD3T3TP OM] udemiaq posoduddjul (aull paysep) Xjisy a(duls e
pue (8uil PI108) XJT2Y PUNOMEUJUOD B J40J SOT36TU93OBJBYD UOolsJuads[p [rOTI8J4018UL “£°€ B4

euoU\mm

00°¢ 08’ oS- ov’ oe’ co'o0

- 64

9303/e>




‘» = %e,lq qeyq yons soveds 234y uj u#:ogﬁw owes ayj} J0j uolsuadsip oyl s
umoys osty “2LL"0 ‘2tl'o ‘cel:o = ﬁn\ﬁ Q - Q) Jo soss3UNDIYT BuTpuOdsauU0d
pue 99| “Lz2°1 ‘S0°1 = %e/'a Jo saoueisip e uspuilho 0]u309191p € AQ
papunoduns g°Q = O, Ve pue ‘2/u = 3 ‘" = 6 900 jO (UOJJEBIJEA deq-3utd)

X119y punomediuod e Joj S0}1151J4930BURYD UOTsudds[p paAfuap A[Tejuswiuadxy ‘4 f *31d
9302/¢Y
00V 08’ 9’ oy’ oc’ 00°0
I | ] T 00°0
—S0°
x
e
~N
0
O
r
@
—0r°
s0'L -
T
00t ——
"1

-65-




GE*| = Px\mx pue £g°1 = _u\mu §81949doud oA 1INYIIBUOD BALIETDU YLTM SUOIBod D14jL8e

~1p OM7] Uaamy}aq pasodudiul | = Og,le pue .w\z = 9 .w.: = @ 300 JO X][9Yy punomeJluov

B JOJ d4E s3[NE3au [BD]38408Y] 3UYYL "¢CL0 = n\wﬁp - nw JO $83UNDTIYY B ylim pue G(° |

= om\«p JO 8duelsip b e J9pu A0 OJ4308191p © AQ papunodudns g°Q = om\«m pue ‘gsu = 3
‘h*h = 6 100 JO (uojjejuea JEQ-BUfJd) X][9Y PUNOMEUTUOD B JOJ dJB S]]NSaJ 1equawiuadxo
ayl “SBujpeol 0T4303I8Ip JO 309JJ3 ¥} BUTMOYS 60713614230BJBYD UOTsSuadslp poAaluap

(9UTT paysep-30p) A11ejuswyJadxe pue (dull P}10F) A11ed138409Y] Ud3M]OQ uos juedwo) °G°¢ 814

ouou\@m

00°¥ ov" o2 000

T T 00°'0

—0t"
$0's mw
® o
o
P
~st:  °

€9t
. —oz°

Ge’

- 66 -




dimensional) volume of

Comparisons can best be made with the experimental results (Fig.
3.4) for the glass cylinder with dimensions b;/ajy = 1.05 and
(bo - bi]/bi - 0.122. The ratio b /a, is then 1.178 and the (two dimen-

sional) volume for the cylinder is thus

2 2 e 2
(Po bi) =7 (1.178 1.05 )

= . £
VOIgc 0 89 )

The relative permittivity of the low loss glass cylinder |{s
assumed to be 3.0, and the equivalent relative permittivity for Region 2

i{s proportioned as

2 volef 1.6

vol
. _3.O< gc - 3.0 (0.896\
f

€, = 1.83

The theoretical results for ¢ = 1.83 along with the corresronding
experimental results are snown {n Fig. 3.5. The deviation between

theory and experiment 13 due to the foreshourtened current paths whicoh
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result when the two helix tapes are allowed to touch. However, it is
clear that the velocity loading ls proportionally similar in both cases.

Figures 3.6 and 3.7, like Fig. 3.3. allow ez/el to vary from 1 to
9, while cot & is fixed at 5 (Fig. 3.6) and 2.5 (Fig. 3.7). 1In all
three figures, the percentage of dielectric loading relative to no
loading is approximately the same.

In Figs. 3.8 and 3.9, ez/e is fixed at 1.5 and 9, respectively.

1

The overall shape of the dispersion curves changes as cot 6 i{s Increased

from 2.5 to 10.

3.2.2 Metal Loading

The effects of metal loading are considerably different than the
effects of dielectric 1loading. No 1longer are there the forbidden
regions associated with the open structure. And the general shape of
the w-8 diagram changes as the effects of metal loading become stronger.

The dispersion characteristics for a contrawound helix (g = 1,
cot 8 = 10) symmetrically oriented 1inside a c¢ylindrical conducting
sheath are presented in Fig. 3.10. The relative constitutive properties
are kl/k2 = 1, ul/u2 = 1, and ez/el = 1. By varying b/a, the relative
distance between the circuit and the cylinder, the aspects of metal
loading mentioned above are clearly seen.

The dashed curve, labeled 1, is the dispersion for the nonshielded
contrawound helix. The ends of this curve couple into the so-called

"velocity of light lines,” as this is an open structure. Curve 1A shows

the effect of a conducting shield placed radially at a distance of b/a =

2. Instead of coupling {into the velocity of light line, curve 1A
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deviates from the nonshielded case at approximately eoa/cot 8 = 0,84 and
couples into the coaxial TEll mode. This coaxtial mode is formed by the
contrawound helix as the inner conductor, and the outer cylinder as the
outer conductor. As the outer cylinder is brought closer to the cir-
cuit, the cutoff for the coaxial TE;; mode moves up in [requency.
Consequently,coupling between the fundamental component of the space
harmonics and the coaxial TE;; mode occurs at higher values of «a
(curves 1B and 1C). A point is reached where the shield is close enough
to the contrawound helix that coupling no longer occurs -- the TEll mode
has moved out of range (curve 1D).

As b/a continues to approach 1, more of the E-field between the
circuit and the c¢ylinder {is terminated on the cylinder. By this
mechanism, the field shape for the traveling wave remains unchanged over
a wider range of frequency, thereby reducing the dispersion (curves 1Tt
and 1F). For b/a = 1, curve 1G, all of the E-field terminates on the
cylinder, resulting in two dispersionless helically traveling waves --
one right handed, the other left handed -- each propagating axially at
p/2na times the velocity of light. Whether or not this situation is
physically possible is uiscussed in Chapter Four.

As a comparison, the dispersion for the single helix in free space
(nonshielded) is plotted in Fig. 3.11, which repeats Fig. 3.10 with this
addition., The dot-dash single helix curve (labeled 2) parallels closely
curve 1G, The deviation between the two is shown on an enlarged scale
in Figs. 3.12 and 3.13.

The effects of metal loading on the single helix with the same

parameters as above are investigated in Fig. 3.14, Like the contrawound

- 74 -




‘slieiap JOj O—.m .n:m 0] J9Joy .AN IAJAND paysep-30p) ooeds 99uy Ut AP = 3
‘0L = 0 300) Xxjl8y a[Bufs e JOJ UOTEJUBASTP 8YI YIIM Q"¢ 814 JO uosjdedwo) *||°€ *I14

auOU\@m

00'? o8’ 09° ov’ oc’ 00°0
00°0

GO°

9303/

ov°

GV’

- 75




L s e o g —
-

*§11e99p J4OJ |1°E put QL' °S814 03 J4ogay ‘1L°E 314 Jo uojjuod padueruy 2t *814

9 300/¢d]

00"}t 06" 08"
|

00°0

-76-

8309/




*STje39p JOJ ||°E pue Qi°¢ s314 03 4dJyay “lL't "Bl4 Jo uoljuod podueuy gL'f ‘Bl

oy’

0 302/ ¢€f
G0° 00°0
I 00°0
/
/
/
/
/
/
/
!/

/ x

/ 2

/ - o

/ s

! @

/!
!
/
z /
3 /
o » \ 2
~at n b/
1} - vt /
ya o

-7




-llIlIlll|lllllllllIllIIllllllllIlIlllllllIllIIIlllIllllllIIlIIIllllIIllllllll.--‘1llllllllllIlIlIlllllllJllIllll‘lCtJIlll‘llIl

L= _x\mx pue | = Pu\mu 9Jt sa1quddoud 8A[IN]IIBUCD BAT3ERIBJA BYL | =

B/Q Q2 @AJND f|°| = B/Q 02 8AJND G| = B/Q (g 2AJND 2 = B/Q Y2
QAUND ! (20kdS 994)) » = B,/Q 2 SAJND payse] ‘e,q Jujhdea Jo 308jJj9 8ujy
SuiMOys ‘JUspuUTLo BUuIONPUOD B BPISU} PIJUITUO AT(eOTJUIawwis *| = 3 pue

OL = 8 300 JO Xx}[ay a[B8ujs ® 40j SO]36}uajorueyd uojsuadsip |d]33403UL “HiI°t 814
euOU\Qm

o0°t¢ o8- 09° ov- oc’ 00°0

-78-

9 303/e




helix, coupling with the coaxial TEll mode is reduced as b/a approaches
1. And like before, the ideal case of no dispersion {s achieved when
b/a = 1 (curve 2D). Figure 3.15 shows how the tendency to couple to the
velocity of light line is reduced as the distance between the shield and
the helix becomes smaller.

The effects of metal loading on a contrawound helix of cot 8 = 2.5
are presented in Figs. 3.16 and 3.17.

Experimental analysis performed by Birdsall and Everhart [4] on a
ring-bar circult inside a metal cylinder lends validity to the previous
theoretical results. Experimentally derived dispersion curves for two
differen* size cylinders, b/a = 1.33 and b’a = 2,16, are reproduced in
Fig. 3.18. Also plotted are the theoretical predictions for the same
dimensions. It is clear that as b/a approaches 1, the w-8 curves becomse
less dispersive. Observe also that for values of b/a > 2, the effects
of metal loading are minimal. Note again that the deviation between
theory and experiment is a consequence of foreshortening the current
paths. For the ring-bar geometry, this {s equivalent to a large

connecting-bar width,

3.2.3 Simultaneous Metal and Dielectric Loading

How the dispersion is affected by the simultaneous loading result-
ing from a dielectric region interposed between the slow-wave structure
and a metal shield can be qualitatively determined by simply superposing
the individual effects of dielectric loading and metal loading. How-
ever, consideration of accuracy requires the use of the quantitative

analysis employed thus far.
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In Figs. 3.19 and 3.20, the relative constitutive properties are

kz/k1 « 1,225, u = 1, and e./¢e, = 1.5. The w-8 curves for various

2’V 2’51

values of b/a are plotted for the contrawound helix in Fig. 3.19, and
for the single helix in Fig. 3.20. 1In each case, the w-8 curves become
ideally nondispersive as b/a approaches 1. Concurrently, the effects of
dielectric loading are reduced as the size of Region 2 is decreased.

This behavior becomes more pronounced as e2/e becomes larger,

1
- In Fig. 3.21, the relative permittivity {is increased such that
ez/e1 = 9 and k2/k1 = 3, The dispersion curves 2re again plotted for

varying values of b/a. These plots are repeated in Fig. 3.22, with

the w-B curves for a single helix (ez/el = 9 and 52/51 = l) added for

reference,
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IV, SUMMARY AND CONCLUSIONS

The formulation of Chodorow and Chu [2] for the contrawound helix
is expanded to include the effects of dielectric and metal loading.
Since wave velocity is inversely proportional to the square root of the
dielectric constant whenever a dielectric material 1is added in the
region surrounding the c¢ircuit, the wave velocity is decreased. In
general, while dielectric loading reduces both the phase velocity and
the group velocity, the overall shape of the w-B diagram remains
unchanged. However, this is not the case for metal loading.

As the degree of metal loading is increased, the dispersion is
effectively reduced for both the single helix as well as the contrawound
helix. The mechanism whereby this is accomplished is provided for by
the outer conducting cylinder. This c¢ylinder allows the propagating
mode to retain in detaill its particular shape by providing an alterna-
tive termination for the electric fields. Consequently, the field
pattern for this mode tends to change only in scale as the frequency is
varied. This effect is Increased as the cylinder is brought closer to
the circuit, thereby reducing the dispersion. Unfortunately, the
reduced dispersion is offset by an accompanying decrease in the circuit
interaction impedance. An inductive coupling of the helix currents to
the metal cylinder and the flow of current in the circumferential direc-
tion in the cylinder results in an increase of the excess stored energy
in Er between the circuit and the cylinder, energy which is useless for

interaction with electron beams.
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In the limit, the effects of metal loading would be greatest If
the slow-wave structure and the outer c¢ylinder were allowed %to touch.
The theory would not bdreak down in this situation provided the currents
could be maintained along their helical path. If this could be accom-
plished, the field shape for the slow-wave mode would be "perfectly”
maintained independent of the frequency, and the phase velocity and
group velocity would become p/2wa times the velocity of light =-- ideally
nondispersive. Unfortunately, if contact were to be made between the
circuit and the cylinder, the slow-wave mode would be shorted out such

that only circular cylindrical waveguide modes could exist.
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APPENDIX A

THE FOURIER DECOMPOSITION OF THE E AND H FIELDS

For a homogeneous source-free region, the vector nature of an
arbitrary electromagnetic field can be expressed as the sum of TE and TM
fields, and in the case of circular cylindrical geometry, these may be
defined as being transverse with respect to the axial coordinate. For
regular boundaries such as that for a circular waveguide, the TE and T™
portions of the fields uncouple, giving separate solutions. However,
for open structures such as the single helix, contrawound helix, and
ring-bar circuits, the skew boundary conditions necessitate both the TE
and TM aspects of the fields to be simultaneously present.

The Ez and Hz field expressions for the free space problem shown

in Fig. 2.1 are

N\ 4 N\ g
1Ez(r,¢,z) Al nIl(Yl nr) 0 <r <a (A1)
L- I [ Prn® gte
z.n:-ﬂ
HE,(ri#,2) ksv..nxzhz,n”) a<r (A.2)
J ) \
and
\ ¢ (
(H,(r,6,2) C, nIQ.(Y!L nr) 0<r <a (A.3)
* R e it te
L,n=-» ( )
H (r,¢,2) D, K, Yy, .r ad<r (A. 1)
2z J 2,072t e ,n |

and from these expressions and Maxwell's equations, the other field
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components take the form in Region 1:

(0 < r < a)
® LB r
L,n
E (r,z2,6) = 1 - PTop, (Y, r)
17¢ %, n=-e Y r)? L,n" L 2,n
L,n
-JB, .2
- Juwe A 2,n Jie¢
- Ll,nxi[Yl,nr) e e (A.5)
%,n
. JBR n
1Er(r.z.¢) B z 7—_‘_ Al nIi(Yl nr]
L,n=~= L,n ' '
-jg, .2
- lwur‘ 2,1’1 J2¢
(——T Cl,nIQ(YE,nr) € e (A.6)
Y r
L,n
Hy iz = 1 ’wjr_m_ 8 nls (g a7
l,n""’ l,n * ’
L8, r -jg, .z
- L.n L,n" _J¢
( )2 Cl,nIl(Y!.,nr) e (A.7)
Y r
L,n
. g
1Hr(r.z,¢) " ) “er 2 Al nIE(Yl nr)
L,ne-e {v r) ' '
L,n
JB -jB, 2
. L,n C I'(Y Y‘) e £,n ejz¢ (A.8)
Yz n L,n L,n
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and in Region 2,

(a < r)
@® L8 r
L,n
2E¢(r.z.¢) = . E__“ N > Bz,nKz(Yl,nr)
' £,n
_JB b A
- I!UJU v L,n Jie
Y Dl,nKI(Yl.nr) € €
L,n
® J8
L,n
e d - — N
2Er(r'.dn--) Y Bi,nxlhi.nr]
L,n=== ! "2 n
-JB z
Lwur £,n Jee
)2 Dy nKe(Yg, )| e ¢
Y r
£,n
. . jwe
2H¢(r,¢.2) ) Y Bz,nK'(Yl,nr)
L,n=-= 2,n
28, _r “38y 2
_ —.&.LD—_ 5 Kl(Yl nr) e L,n eji¢

-i8, _z
L,n ejl¢
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In the above equations, the four sets of Fourier coefficients Al n’

C , and D are the result of the TE and TM fields in the two

Bl,n' £,n £,n
regions, as summarized in Table A.1.
By expressing the Fourier coefficients for the fields in terms of

the Fourier coefficients for the surface current densities on the two

helix tapes, the fleld expansions for the contrawound helix take the

form:
1Ez(r,¢,z)1
o Y a L8 a
- - L.,n - y AR - £, ¢ .+ ¢ .- ]
? J g z ka (Yl,na)( L,n * JQ,n) Y a ( Ji,n * Ji,%)
yNu=® L,n J
ZEz(r,¢,z)J
EX ) '
0 Yl’na]Ig(Yl’nr‘ 0<r<a(A.13)
] o T e
(I (v, Lakk (v, ) la <r (AW




Table. A.1. TE and TM Fourier coefficients used in conjunction
with the formulation of Appendix A.

REGION

1 (0<r<a) 2 (a<r)
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3\
1E¢(r.¢,z)

2Eo(r.q:,z) )

\
1Er(r.¢.2)

ZEY‘(P $,2) J

ka L,n

L,n

=38

2,n e32¢

& =38
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L,n

L,n

a
: )-_L.rl_of 0
L,n ( )2 L,n £,n
Y, _a
L,n
(v, a)itr, )]
Kl Yz'na Il Yl,nr
L,n
kIi(vl.na]xi(vz’nr) )
(
D<r<a (A.15)
<
L0 <r (A.16)
() )
Kl(Yz’na)Iz(Yn’nr)

LR a
ol SN
Yl na L,n L,n

) -

(0<r<a (A7)

L0

o<r (A.18)




1Hz(r.mz)

2Hz(r,¢,z)

3
1H¢(r,¢,z)

2H¢(r.¢,z),

z’nr)T (o <r<a (A.19)
~j8 z
e L,n" 326 <
z,n”]J (a<r (A.20)
rK'[Y a]I (Y r'] )
£ ¢,n £°'2,n
¢, $ .+ a
( Jz,n Jz,n) r< ?
(130T n2 K (g or) )
257 ) R (fJ' °5 )
L£,n Y a t,n L,n
£,n
N ¢
z’nr) 0<r<a (A.21)
P gt
z’nr) ) la<r (A.22)
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H(re.2)) ke (vg na)1(v, or)
LI D) By pnd (¢J‘ + ¢J+) {
L,n=-= | *
zﬁr("-“’oZ), L Ii(Yl,na]Ki(Yl,nr) /

Yl’na
\W r
Kl(Yl,na)Il(Yl,nr) 0<r<a (A.23)
‘2 | IBen® gne
r
Il(Yz.na)Kl(Yl'nr)d la<r (A.24)

Considered next is the situation in which Regions 1 and 2 are
allowed to have individually distinct dielectric properties, as illus-

trated in Figs. 3.1 or 3.2. The intrinsic wave impedance is given by
o=l i=1, 2 (A.25)

where | denotes either Region 1 or Region 2. Similarly, the radial

propagation constant is defined to be

5 2'|/2
b)) e

For convenience, a shorthand notation is adopted whereby the L and n

dependence is assumed, In this notation,
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Jn,8 Lk _
E = 2 B AT (Y r) - —t CI[Y ,-] e gz e-“"
15p Y, 1 2. 1
1
¢ C -38z 394
H, y _n1 I(Y1r) e e
¥ 18 -38z _jt
Moo= 143t ar(yv,r) - c1(v,r)} 382 (IU¢
6 Y, 1 . 2 1
1M
2, 8 -38z _32
1H-2——AI(Yr]*—J—CI'(Yr)e AL
r 2 1 n,Y 1
vor 1V

and in Region 2,

(a<r)or (a<r <b)

n_8 Jk
-2 -2 -jBz _J%¢
oE, 5 BKe(er) T oxé(vzr] e e
Y.r 2
2
Jn 8 Lk )
- T2 o __2 -jBz _je¢
2°r X Y BKe (YZP) > DKe(er) e e
2 Y.r
2
R -jBz 3¢
sz 2 " Kh(er) e e
kz L8 -jBz _jLe
[ —— \ - c—
Mo 743 T Bk} (vzr) > th(er) e e
2 n.yY_.r
22
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(A.

(A.

(A.

(A.

(A.

(A

(A.

33)

34)

35)

36)

37)

38)

.39)

10)
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71 » (Yl'")i (A.27)
B = B,”n (A.28)
F(Yir) =F, (jg'n)ir ’ Fz = I, Ko Ii. Ko (K.29)
and
-
As A,”n
B = Bl’n
? (A.30)
Ce= C!,n
D= D,”n

Keeping in mind that the Fourier expansion of the E and H field

components 1is over the double summation X , the shorthand form of
L,n=-o
these field components becomes in Region 1,

(0 < r < a)

E, =1 n,AI(Y,r) e I8z o (A.31)
in, B jk -
1E¢ -3 21 AI(Y1P) - ;—l CI'[Y1r) e gz ejl@ (A.32)

Y1r‘ 1




~38,z -38.p/2 =3B p/2

-JB 2
e - e A e e n

I & eIt GIir

(B.20)

The necessary and sufficient condition for this equation to be satisfied

is

jam -Jg p/2 JB p/2

e e e 21 = t=:.‘12"u

(B.21)

where u Is an integer. Application of Eq. B.17 to Eq. B.21 implies that
£ - n=2u (.22}
or

ns=2u-+ 4% (B.23)

At this point, one may pursue the analysis from two different perspec-
tives. The first considers the problem redefined in terms of a pseudo-
period L = p/2. The double summation over L and n is restricted as a
consequence of Eq. B.22 so that if & is even, n is even, and if % is
odd, n i{s odd. This then implies a coupling between ¢ and z, as would
be expected, and which 1s necessary for the orthogonality integral to be
evaluated over p/2 rather than the usual full period p.

The second and more familiar scenario maintains orthogonality over
the entire period p, but redefines the propagation characteristics for
the space harmonics. Substituting Eq. B.23 for n in the expression for

sn given in Eq. B.17 and noting u is allowed to vary over the entire
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+ = (B.17)

The result is that the propagation constant for the nth order space
harmonic is defined by Eq. B.17.

When step~turn periodicity (also called screw symmetry) is pres-
ent, as is the case for the contrawound helix, Floquet's theorem pro-

vides the expression,

-J8 _p/2
BG + 7, 2 +§)- e ° E(¢, 2z) (8.18)

Like Eq. B.1l1, the above equation states that the electric field evalu-
ated at ¢ and z (written E(¢, z)) and propagated a distance
p/2 (written e'JSOD/2) is identical to the electric field evaluated at
the position ¢ = ¢ + m and z = z + p/2. The rfact that the fields at
these two positions are inverted from one another is automatically
accounted for by ¢ = ¢ + .,

By writing the Fourier expansion for the 2z component of the E

field at the position ¢ = ¢ + m and z = z + p/2,

= I,(v r) -j8_z =3B _p/2

R\, £ n M IREL n n

Ez(r,¢+1t,z+2> X Al.nme e e e
r<a L,nu-= ' n

(B.19)

and substituting this along with Eq. B.12 into Eq. B.18 at r = a, one

obtains the following equation:
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-JB p
(written e ° ), 1s identical to the same functional form for the E

fields evaluated instead at z = z + p (written E(z + p)).
For a periodic slow wave structure with circular cylindrical
geometry of radius "a," the electric fleld can be decomposed {nto a

Fourier series. Consequently, E(z) is written as

- I,(v.r) -j8 z

- L' n jLe n
Ez(r. ¢, 2) )) Al.n T—rvf;T e e (B.12)

L,ne~w £ ' n
rsa
where A2 n is the amplitude factor and
2 2 2

en = Yn + k (k = w/c) (B.13)

The Fourier decomposition of Ez(r. ¢, 2 + p) is similarly given by

® I (Y r) -jg.z ~=jB.p
. L''n jee n n
E,(r, 6,2+ p) . 121-_. Al'n —(——112 7 3 e e e (B.14)

r Sa

Letting r =~ a and substituting Eqs. B.12 and B.14 into Eq. B.1ll yields

-j8_z =3JB_p -j8 p -jB 2z

e e T e Mae % 7 & RLLA (B.15)
For Eq. B.15 to be true implies that

-jg p JB.P

e e 2 | = e-‘jz'“n (B.16)

further implying that
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For a given mode of propagation and at a given frequency,

the wave functions at two points on a transmission system,

separated by one period, differ by a complex constant.
The application of Floquet's theorem to periodic slow wave structures
allows one to determine the propagation characteristic of the space
harmonies,

For a lossless periodic transmission system, the E fields are

giver. the form,

- -JBoz
E(z) = E(z) e (B.8)

which corresponds to Eq. B.7 with T = ~J80; and for z = z + p, Eq. B.8

becomes

- -JBoz -JBop
E(z + p) = E(z + p) e e (B.9)

From Floquet's theorem, it is necessary that E(z +p) = E(z). as seen in

Eq. B.6. Thus, Eq. B.9 can be expressed as

- -J8 z =-jB D
E(z +p) =E(z) e % e © (B.10)

which is obviously
-j8 p

E(z + p) = E(z) e °© (B.11)

The above equation simply states that the functional form for the E

fields, evaluated at z (written E(z)) and propagated a distance p

- 107 -




e

A useful corollary to Floquet's theorem is obtained in the follow-

ing manner., Let k take the form,

k = T (B.3)
If ¢(x) is defined as
$(x) = e-Fx y (x) (B.4)
then
%(x + np) = e-npr e-rx y{(x + np) (B.5)
Applying Eq. B.2 to the above equation gives
o(x + np) =~ e NPT o7TX [e“pr y(x)] = e ™ yix) = 0(x)  (B.6)

so that Floquet's theorem states that one can always find a solution to

Mathieu's equation of the form,

v(x) = e X a(x) (B.7)

where ¢(x) is periodic with period p.

It should be apparent from Eq. B.7 that the functions y{x) can
represent wave functions. In light of this, Floquet's theorem becomes a
statement about periodic translational symmetry. For a periodic trans-

mission system, Floquet's theorem may be stated as follows:
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APPENDIX B

FLOQUET'S THEOREM AND STEP-TURN PERIODICITY

Floquet's theorem results from a consideration of the second order

linear differential equation,

where a and b are real constants. Known as Mathieu's equation, Eq. B.1l
occurs in problems of wave motion with elliptical boundarjies, the

simplest example being the vibrations of an elliptical drum head.

Although the equation can be solved by the usual power serles method

(method of Frobenius), such a solution is not valid when x = np, "n"
being an integer. Other methods are then employed to arrive at the more
general solution and, of particular interest, solutions which are
periodic in x, i.e., y(x) = y(x + np), where n is an integer and p is
the period. However, such periodicity is obtained only when the con-
stant ™"a" is allowed certain values. If "a" differs from these allowed
values, then the solution is no longer periodic. 1Instead, It takes the

form

y(x + np) = ky(x) (B.2)

k being a (complex) constant. Equation B.2 is the statement of Flo-
quet's theorem and, though not performed here, it is a simple matter to

prove this theorem using linear algebra [6, 7J.
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Finally, the Fourier coefficients B and D can be e¥pressed in

terms of ‘Jt and th through the relationships

B =A ( ) (A.58)

N:.l I“:’
KlH
(4]

and

n -
D==2|&c- (% + %" (A.50)
Ko L™

At r = a, EZ and E¢ in terms of the surface current density are

E(r=a) =] gn,I [&(ZJ' s 25 ) e x0T s ¢J+)] eIBZ J () 60

If n, = oo Eqs. A.b0 and A.61 reduce to Eqs. A.13 (A.14) and A.15

1
(A.16) for r = a, respectively.
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T T —-

B A0 _ans

E———

. Ii[(yz'n)f}

This is also true for Ke' Ké, Kh, and KE, such that

W

(A.55)

(A.S5¢)

A conducting sheath placed at r = b in Region 2 (Fig. 3.2) effects only

the last four equations.

I(Yzb] K(Yza) - K(Y2b] I(Yza)

I'(Yzb) K'(Yea) - K'[Yzb] I'(Yza)

I'(Yzb) K(Yza) - K'(Yzb) I(Yza)

I(Y2b) K'(Y2a) - K(Yzb) I'(Yza) j
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These become (in shorthand notation)

(A.5T)




2
n, N, 28I K
12 h (A.48)

Q- —
3 R .
a Y1Y2 [k2n2Y1IKé k1n1Y2KhI ]

2282n 12Kh (Y a)2 - (* ;)2
1 1 2 (A.49)
n Y. K I *

M= t -
(an)3z}1a)3 konoYi1Kg = Kym YKy

and

k.nY.I'K - k.n.Y.K'I
N = 2 ZY Ye = 211h _y (723)2 - <Y1a)2 (A.50)
172"

The expression for A is

A= [?[ZJ- 23 x(%7 . ¢J*)] (A.51)
where
T .31 (A.52)
= .
and
2
k,I'Y a(Y a)
x--%%—--M 1 122 (A.53)
Y1a 28I

In the above equations, the argument of the modified Bessel functions I

and I' is Y1a, i.e.,

I 11[:(71’n)1a] (A.54)




LK
- 2 JB -jBz ¢
M ¥ —~ BK, (er) * T DK (er) e e (A.42)

Y2r 2 2

where Ke' Ké, Kh' and K% have the functional form given in either Eqs.
3.16 or Eq. 3.17. As before, the Fourier coefficients A, B, C, and D
are a consequence of the TE and TM fields, as outlined {n Table A.1l.
Next, the Fourier coefficients A and C can be written {n terms of
the z and ¢ components of the surface current density on the two

helices., Letting

Z .t Z,t
b' gt (A.43)
and
ot _ 6.2
J i (A.41)

the expression for C is

C~R(Z3 +257) + 5%+ 0 (A.45)

where

(A.46)

=

"
:il:!
[\¥) -
»1()
=
'/—\'
<

n

Y]
N—

n

)
o~
-

—y

|
~—
—_—

2
k. I'vy,aly,a] n
R R (2 ) ! Q—M[(Yza)z - (Y1a)2} +Q (A.UT)

3 N
anZI
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since E = 0 at r = =, and from No. 2,

] * N
E «g-Eds = f E  nxVxEds=0 (C.9)
helix tapes helix tapes

-

since n x V x E =« 0 on iae helix tapes. Similarly, applying No. 3 to

the infinite planes at z = 0 and z = p gives

* ® 2w »*
[ E -g+Eds=] rdr [ dé|E(z=0)+38(z=0)+E(z=0)
planes: (o} o

z=0, z=p

JBP & =38P
t e E(z=0) -3(z=p)-e E(z = 0)

® 2w *
- I r dr f d¢ E (2 = 0) |s(z = 0) + s(z = p)| E(2 = 0) =
o °
(C.10)

since s(z = p) = = s{(z = 0) on account of a reversal in the direction

of n. Considered together, Eqs. C.8 through C.10 imply that

*
f s+ Eds =0 (C.11)

1m

and Eq. C.1 reduces to
*
L = ] [(v x s') « (VxE) - k2§ . g] av (C.12)
v

By application of the vector Green's theorem to Eq. C.12, L is trans-

formed to

- 116 -




to be satisfied requires that

Vx¥xE-=KkE in v (C.6)

nan§-§°E on S (c.7)

Thus, E must satisfy the vector wave equation in Eq. C.6 and the bound-
ary condition in Eq. C.7, as expected.

Next, for the boundary value problem consisting of the contrawound
helix in free space, ¥ is taken to be an infinitely 1large circular
cylinder having infinite radius and finite length of one helix pitch
p. The surface S enclosing V consists of the two infinite planes z = 0
and z = p; one cylindrical surface at r = », 0 S z £ p; and the metallic
surface of the helix tapes at r = a,

The physical nature of the problem is such that E must:

l, Vanish at r = o,

2. Have no tangeﬁtial component on the metallic surface of the

helix tapes.

3. Satisfy Floquet's for a periodic structure, {.e.,

=38 p
E(z =p) = e E(z = 0)

Using these conditions, the surface integral in Eq. C.l1 can be shown to

be zero. From No. 1,

[ E' -s-Edas-o0 | (c.8)

r=®
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v v
* #*
+] 68 +s-Eas+ [ E « 3. eEas (c.2)
s s
or since
* *
[ EE s +6Eds=] 6E-g-E ds (€.3)
s S

Eq. C.2 is written as

cL-fl:(vusg)'-(vxg]-keg*-g]av+j 5§*-§-§ds+c.c.

(S

(C.4)

Note that the unexpressed terms in Eq. C.U are extraneous for the fol-
lowing discussion.
By means of the vector Green's theorem, 8L can be transformed to

the form,

*
sL= [ 6E + (VxV xE ~-kE) dv
v

* ~
-] 6E «(nxVxE-s+E)ds+ c.c. (C.5)
s

*
Because the first variation of L is zero and SE is an arbitrary varia-

tion, each integral in Eq. C.5 is individually zero. For this condition
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APPENDIX C

DERIVATION OF THE LAGRANGIAN USED IN CONJUNCTION WITH
THE VARIATIONAL METHOD OF SOLUTION

To employ the method of calculus of variations (the variational

method), it is necessary to determine the correct form of the Lagrangian
for the problem. One begins with the general form of the Lagrangian for

Maxwell's equations:

L-j[(vxl-:)*-(V-E)-kzg'-ngv+J'g*-g-gds (C.1)
v s

In Eq. C.1, S 1s the surface enclosing the volume V under consid-
eration, The most general boundary condition on S is represented by s
such that ; x VxE=g -+ E, Conditions 2.14 and 2.15 (noting
; x VxE-= 'jwu; x H) are then a specialized case of g « E. It should
be pointed out that s is Hermitian and that the relationshf g « E =
E - §* 1s valid for any arbitarary vector E,

The Lagrangian must be constrained to match the boundary value

problem. Consequently, the first variation of L,
L =0

is performed giving

? see also reference 2, pp. U47-51,
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-8, ¢ f;l (L + 3n) (B.29)

The single helix {s invariant under the differential step-turn

symmetry,

‘JBoAz
E(r, ¢, 2) (B.30)

E(r, ¢'+§1Az, z+Az)-e
The coupling expression for L and n (equivalent to Eq. B.22 in the case

of 180° step-turn symmetry) i{s found to be

-ne22
£ -n 2z Y (B.31)
Though u, like % and n, is allowed to vary over the entire range of
integers, Eq. B.31 is true for all values of Az only if u = 0, There-

fore, L = n such that the Fourier decomposition of E_ for the single

Z

helix needs to be summed over only one index.
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range of integers, one can define BE u to be
’

an
- 80 + b (2 + 2u) (B.24)

-8 + 2% (g 2n) (B.25)
o] P

The Fourler expansion for Ez is then rewritten as

Ly r) =38, 2

- , e
EZ(P, ¢, 2) ) Al,n T—r?—*—ET e e (B.26)
t,n £t L,n
in which Bl n is given by Eq. B.25 and Yg n is defined by
1 2 L
2 2 2
= - 7
Yl,n Bl,n k (B.27)

Thus, coupling between ¢ and z occurs through the propagation constant
for the l,nth order space harmonic.

It becomes apparent that {f step-turn symmetry is present in a
given problem, then coupling exists between ¢ and z through the propaga-
tion constant 82 n For example, the 120° step-turn symmetry

-JB _p/3
E (r. ¢ + %1 y 2 0% 3) =e © E(r, ¢, 2) (B.28)

results in 8 being given by

L,n
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x
(2]
i
x
(3]
—
Q

<

L-f g;-(V:V

e E e+ (VxVxE, -«k%E,) dv

=2 -2 =2
Vs
* ~
-I g .nxVXEdS
S
- E* « (n. x VxE +n xVxE)ds (C.13)
rea = 1 =1 2 =2 ’

excluding tapes

where the subscripts 1 and 2 denote quantities for r £ a and r 2 a,
respectively. The first three integrals in the above equation are zero
because of Egs. C.6 and C.1l1, and the fourth can be extended over the
entire surface r = a because of Eq. C.9. With these simplifications,
the Lagrangian is restricted to an integral over the surface r = a. Let
I denote the Lagrangian, now properly constrained to fit the boundary

value problem. Thus, from Eq. C.13,

*
1--[ E - (ny x 9 xE *+ny=xVxE)])ds (C.14)

=jw [ E «n x (H -H)ds (C.15)

~ -~

in which the relatifon -juwuH = V x E is employed and noting n1 = - nz.

T-

T To facilitate understanding, the problem has been limited to the case
of uy = u, = v '
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By expressing El - H, in terms of surface current densities, one obtains

2
the variational integral

p 27 - _
T-gw [ gz adefE(r=a |% +"J‘]+E;(r-a) 23" . 2yt
o o
(c.16)

The exact solution to the boundary value problem will have I = 0., This
is because the Iintegrand of I vanishes everywhere; E¢(r = a) and
E (r = a) vanish on the helices, while °Jt and 2J% vanish off the
helices. However, the converse statement is not true, and to obtain the

exact solution, one must solve the variational equation
61 = 0 (C.17)

Nevertheless, one can get an approximate solution by simply solving the
equation I = 0,

The physical interpretation of 1 is very simple; I is the complex
power which might be generated or absorbed by the cylindrical surface
r = a., It i{s, therefore, certainly reasonable that I should be zero.

The case of a contrawound helix separating two dielectric regions
at r = a and bounded by a perfectly conducting cylinder at r = b is
analyzed in much the same fashion. The resulting variational integral
is again C.16, which is not surprising based on the physical interpreta-

tion of 1I.

- 118 -




APPENDIX D

RELATIONSHIPS BETWEEN THE COEFFICIENTS OF THE FOURIER
DECOMPOSITION OF THE SURFACE CURRENT DENSITIES
FOR THE SYMMETRICAL MODE

The symmetrical relationships between the parallel and perpendicu-

lar components of the surface current densities are

|g+[a. ¢, z) = Ig-(a. -4, 2z) (2.403)
J'(a, ¢, 2) = W (a, -9, 2) (2.40b)
the superscripts "-" and "+" representing the right-handed and left-

handed helices, respectively. With the Fourier decomposition of each

surface current density component given as

[ —JB 2
ls*a, ¢, 20 = I lJf Lo bn Qi (2.41a)
L, Nn-o '
® -j8 Z
1ta, ¢, 2) = 3 J‘J: e Linm Jke (2.41b)
£, Na-> '

one can determine a relationship between the two sets of coefficients

+ -

'J and J ., as well as the two sets of coefficients J'J+ and
2,n L,n L,n

1-

Jl,n'

Since the propagation constant for the l,nth order space harmonic

1s defined as
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g, =8 + %1 [2 + 2n] (2.12)

it is observed here that

27
Bog net = Bo * 5 [-2 + 2(n + )] = Be o n (2.43a)
and that
2T
Byng =8 * 5 (Bt -] -e (2.43b)

Next, Eq. 2.40a can be written in terms of the Fourier expansion given

in Eq. 2.41a:

j z - -JjB, 2z -
) |J* e fomT JLé ) |J1 e L,n” 32(=9) (D.1)
£,n !

Letting £ = - £ and n s n + ¢ for the right-hand side (RHS) of Egq. D.1

gives

=38 38p neg? LIt

2z
2,n e‘jg'd> - z ' - (D.2)

J-l.n*l ©

N
£,n 2,n L,n

Note that the RHS still sums over the same range as the left-hand side
(LHS) as a consequence of £ and n spanning the entire set of integers.

Substituting BE n for 8_2 (Eq. 2.43a) in the above equation finally
1]

N+

gives the result,

-J8 z _ -J8 z
) lJ’ e Lon Gdte ) |J e~ L Lo (D.3)
-2,n+
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From orthogonality, the only way the LHS can equal the RHS is i{f the

coefficients are equal term by term. Thus,

= IJ (2.u43a)

Referring again to Eq. D.1, one could just as easily make the substitu-

tion £ = - 2 and n #= n + £ for the LHS to produce the relation,
I I
J = 17 (2.44p)

Similar relationships hold true for the perpendicular components,
Namely, that

J (D.W)
and

4.+ 4=
J-l,n+l 3 Jl,n (D.5)

Furthermore, using the relationships in Egs. 2.38 and 2.39, it is a

simple matter to show that
LM A (D.6)

The expression for H, as given in Eq. 2.34 is rewritten here as
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f
]
. Il(Yz'na] Kl(Yz,nr] i r2a
J
H o= ] zﬂz n 4 S TIPS L ¢
2 t,ne-e '
1
Kl(yl.na) Iz(Yl,nr) rsa
\ / A
(D.7)
z - ¢, ¢,
Hl.n * (Yi.na) ( Jl,n * Jl.n) (D.8)
By substituting Eq. D.6 into Eq. D.8, one finds that
z - ¢ - - ¢ - - =
L (vy n2) ( Jem J_l’nﬂ) 0 for £ =0  (D.9)

Equation D.9 shows that the fundamental component of any wave fleld
operating in the symmetrical mode {s a pure TM™ field;.the TE parts of
the fundamental component arising from the two helices cancel each
other, In other words, the symmetrical solution has no Ez component

with £ = O, This is rigorously true because no approximation is

Involved,
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APPENDIX E
NUMERICAL CONSIDERATIONS

The numerical solutions to the determinantal equations are
obtained with a Hewlett Packard 1000 minicomputer,

Because of numerical limitations and because the series in Egs.
2.71 and 2.73 converge slowly, these equations are reformed to provide

rapid convergence [8, 9]. Equation 2.71 is transformed to

2
2Uo,o + Lo,o sin 6 = [f3(0) - A3(£%

13
v 2 - sin ©
* 121 % (?l,o * Y0 ko0 Tt ) =0 (E.1)
where
L = (7 a)2 sine - (ka]2 cos’e (E.2)
0,0 0,0
and
_© cos(RF) 1.2 - RS .
Ayle) = 221 —1—3—2—- - 1.2002 + 5 £° log(g) - § & 55 &
(E.3a)
Ay(0) = ] ‘—3 Z 1.2002 (E.3b)
L=1 L

In Eq. E.1, the series
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g 2 sin @
'§1 o Loo 1 (E.4)

is chosen because it converges at about the same rate as the series

T 2
E ag (Yz’o + Y_l'o) (E.5)

L=1

The term L, , is reasoned by examining the quantity (Y + Y o) for
, -

£ = 0. From the physical considerations, the expression

2v > (Yt.o . Y_m) (E.6)

i1s guaranteed for all 2. Thus, Lo o is a consequence of
1

L = 2Y - 2 (Y 3)2 K (Y .a) I (Y a sin29>
0,0 0,0 0,0 o\ 0,0 o\ 0,0
2 . , 2
+ (ka) Ko(Yo,oa) Io(Yo,oa) cos“8 (E.T)

Equation E.2 results from making the approximations that KoIo = 1/2 and
\ ' = - =
KoIo 172, for Yo,oa o(t) .

The series E.4 summed by manipulating ui/l into a suita™e form

using the definition for ag given in Eq. 2.69. This form is as follows:

2
)
2

4 2 4 1.1 2 o 2|1 _ cos(ie)
!,3g2 sin“(2g/2) = ——-"352 5+ (2 cos (15/2)) 2[ 3 3 ]
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or

™ N

n'n
l

ne~1 8

2 -
5 [AB(O) A3(£)] (E.8)

where A3 is defined by Eq. E.3.

Using the same reasoning, Eq. 2.73 is transformed to

2 _ v 2 - sin 8 _
Ug + v+ L, sin 8 52 [A3(o) A3(£)] + 221 ap (Yl Y, - L = ) 0
(E.9)
where
L, = (Yoa)2 sine - (ka)2 cos 6 (E.10)

Equations E.1 (resp. Eq. E.9) is solved numerically to obtain ka

as a function of Bo o2 (resp. Boa) for the contrawound helix (resp.
1

single helix) in free space. For the two dielectric problem of Chapter

Three, L,  (resp. Lo) is scaled by the factor

in which the argument of the modified Bessel function is YQ oa (resp.
?

Yza).
To further facilitate numerical calculation, a numerical device is

employed which extrapolates an infinite serjes to its true sum, using a
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finite number of approximations. For example, if ri represents a par-

tial sum of Eq. E.1,

then the true value of the infinite sum is approximated by the following

extrapolation:

2
b oer - (%1+2 i)
- T e TG AL )

(E.12)

Known as Aitken's gi process [11], this extrapolation may be used to

accelerate the convergence of linear {terations provided

(rc - r1+1) - Ci(f- - ri) lc,| <1 (E.13)

The physical considerations again ensure that condition E.13 is satis-

fied for the determinantal equations E.1 and E.9,
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